
184 

Acta Cryst. (1958). 11, 184 

Complex Alloy Structures Regarded as Sphere Packings.  
I. Definitions and Basic Principles 

BY F. C. FRANK 

H. H. Wills Physics Laboratory, University of Bristol, England 

A~D J. S. KASPEI~ 

Research Laboratory, General Electric Company, Schenectady, N.Y., U.S.A. 

(Received 12 August 1957) 

Complex alloy structures, particularly those of transition metals, are considered as determined by 
the geometrical requirements for sphere packing. A characteristic of the class of structures discussed 
is that tetrahedral groupings of atoms occur everywhere in the structure--alternatively stated, 
coordination polyhedra have only triangular faces. The topological and geometrical properties of 
such polyhedra are examined and rules and theorems regarding them are deduced. Justification is 
given for the prominence of fottr such polyhedra (for coordination numbers of 12, 14, 15 and 16) 
in actual structures. General principles regarding the combination of these polyhedra into full 
structures are deduced and necessary definitions are given for terms that facilitate the detailed 
discussion of this class of structures. 

1. Introduction 

I t  has been pointed out (Kasper, 1956) that  a number 
of the relatively complex structures, particularly of 
transition metal alloys, may be regarded as deter- 
mined by the geometrical requirements for sphere- 
packing in a higher degree than has generally been 
realized. A fruitful approach is to consider the coor- 
dination shells around particular atoms, which prove 
to correspond to a certain limited number of types. 
In accordance with a consideration due to Boerdijk 
(1952), who counts the number of tetrahedral group- 
ings of four spheres as a rough test of the efficiency 
of a sphere-packing, it is found that the preferred 
coordinations are those which define a net of triangles 
on the surface of the sphere, and therefore tetrahedral 
groupings of triads of atoms in the coordination shell 
together with the central atom. 12-fold coordination 
is of course the most important case, 12 being the largest 
number of equal spheres which can be put in contact 
with one (Boerdijk, 1952). There are three distinct 
symmetrical 12-coordinations with rigid equal spheres. 
Of these, it is not the cubo-octahedral 12-coordina- 
tion of the'face-centred cubic structure, nor the twinned 
cub0.0ctahedral 12-c00rdinati0n of hexagonal close- 
packing, but the icosahedral 12-coordination which 
is generally found in the complex structures. This 
arrangement has two evident advantages, both deriv- 
ing from the fact that, with rigid spheres and in the 
most symmetrical position, the spheres of the coor- 
dination shell are not in contact with each other, as 
they are in the other two cases. One consequence is 
that, though with rigid spheres the circumscribing 
sphere has exactly the same radius for all three cases, 
with slightly compressible mutually attracting spheres 
the circumscribing sphere will be least for the ico- 

sahedral case: this also gives the lowest energy within 
the group. The second consequence, apparent by 
considering rigid spheres once more, is that  the 
icosahedral grouping is in fact not one structure, but 
a range of structures, in all of which the twelve co- 
ordinating spheres are equidistant from the central 
one, allowing a freedom of deformation to comply 
with the simultaneous coordination requirements of 
other atoms than the central one. 

There appears to be no space-filling structure 
utilizing the icosahedral coordination and providing 
12-fold coordination of all atoms. For rigid equal 
spheres, demanding true contact coordination, this is 
easily proved (from the fact that  not all neighbours 
in the icosahedral 12-shell can be in contact): when, 
as for real atoms, some moderate amount of variation 
in interatomic distances is tolerated, proof is likely to 
be difficult, but by trial it appears to be a fact. On 
the other hand, it has been shown (Kasper, 1956) 
that typical complex crystal structures, particularly 
of transition metal alloys, provide examples in which 
abundant icosahedral 12-coordination is combined 
only with 'triangulated' coordinations of larger num- 
ber (14, 15 and 16) (Fig. 1) which provide appropriate 
sites for the larger atoms in the alloy composition. 
Since these coordination shells have not been fre- 
quently encountered heretofore, it would be in order 
to consider in some detail their nature and properties. 

2. Triangulated coordination shel ls  

As we have seen, the fact that  in the closest approach 
of three spheres their centres form a triangle with 
their points of contact in each side, and in the closest 
approach of four spheres their centres form a tetra- 
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(a) 
(b) 

(c) (d) 

Fig. 1. The four 'normal coordination polyhedra' of complex 
alloy structures. For C.N. 12, two spheres above and below 
the central sphere, along the fivefold axis, are not shown. 
Similarly, two spheres above and below the central one of 
C.N. 14, along the sixfold axis are not shown. For C.N. 16 
one sphere below the central one is not shown. 

(a) Icosahedron, C.N. ]2. (b) C.N. 14. (c) C.N. 15. 
(d) C.N. 16. 

hedron with their points of contact  in each edge, 
directs our a t tent ion to coordination shells of neigh- 
bouring atoms around any  one in which the sur- 
rounding atoms are at  the corners of a polyhedron 
with t r iangular  faces. Such shells we shall call tri- 
angulated coordination shells. The identification of 
these coordination shells involves a judicious mixing 
of topology and geometry.  If  measure is to ta l ly  
omitted,  there is no problem, since any  number  of 
points exceeding two can be connected together  in 
triangles, and in various ways if the number  exceeds 
four. If  strict measure is insisted on, with the require- 
ment  tha t  all triangles in the coordination shell are 
equilateral, the problem is trivial, having as solutions 
only the regular te t rahedron,  octahedron, and icosa- 
hedron. If  it is fur ther  required t ha t  the shell a toms 
make equilateral triangles with the centre, there is 
no solution a t  all. I t  is therefore necessary to tolerate 
some depar ture  from equali ty of distances, without  
making this so great  as to introduce ambigui ty  as to 
whether a pair  of a toms are neighbours or not. 

We can in fact  eliminate these ambiguities by intro- 
ducing new definitions of coordination number and of 
neighbour. The definitions t ha t  follow are precise for 
any  exact ly known structure.  Border-line cases can 
exist, part icular ly a t  symmet ry  planes of the crystal  

s tructure,  but  tu rn  out to be very rare in the range 
of s t ructures  now under  discussion: none of the four  
special coordination shells characterist ic of these 
s tructures is close to a border-line case on this defini- 
tion. 

2.1. Some definitions relating to coordination 
We define the domain of an a tom as the space in 

which all points are nearer  to the centre of t ha t  a tom 
than  any  other. I t  is a polyhedron, each face of which 
is the plane equidis tant  between tha t  a tom and a 
neighbour. I f  we describe all the planes bisecting the 
lines joining the central  a tom to all other atoms, then 
the innermost  polyhedron bounded by these planes 
is the domain of tha t  central  atom, and every a tom 
whose domain has a face in common with the domain 
of the central  a tom is, by this definition, one of i ts 
neighbours. The number  of neighbours will be called 
the coordination number of the central atoms, and the  
set of neighbours its coordination shell. The polyhedron 
whose edges are the lines joining all the atoms of the 
coordination shell which are also neighbours of each 
other will be called its coordination polyhedron. The 
coordination polyhedron and the domain s tand in dual 
relationship, each having a ver tex corresponding to 
each face of the other. 

I t  is to be noticed tha t  the te rm 'coordination num- 
ber'  has been used in two ways in crystal lography,  one 
of which is precisely defined in principle, though 
seldom used with rigour, and another  employed in- 
tuitively, without  exact  definition. According to the 
first, the coordination number,  Z, is the number  of 
nearest  neighbours to an atom. According to this 
definition, in hexagonal  close packing Z is 6 unless 
c2/a 2 is exact ly  8/3, in which case it is 12. The definition 
is rarely applied with rigour in this case : Z is generally 
regarded as 12. In  the body-centred cubic lattice, 
however, some authors  probably  the majori ty,  count 
Z as 8 in accordance with the nearest-neighbour 
definition, but  others prefer to regard it as 14. The 
definitions we have given above provide a rigorous 
basis for the second view-point according to which Z 
is unambiguously  12 in the hexagonal  close-packed 
metals  and 14 in a body-centred cubic metal.  In  the  
more complex structures of metals  and intermetallic 
compounds this definition yields numbers  such as 14 
where the nearest-neighbour definition would give 
1 o r 2 .  

Logically, since there is a one-to-one correspondence 
between the coordination polyhedron of an a tom and 
its dual, the domain of t ha t  atom, there is no need to 
consider both. We might  conduct our whole a rgument  
in terms of the space-filling packing of polyhedra,  
which are the atomic domains.  The reason why we 
prefer to th ink pr imari ly  of the coordination poly- 
hedron is t ha t  crystal  models in which a sphere 
representing each a tom is connected by  wires to each 
of its neighbours are easier to construct,  draw, or see 



186 COMPLEX ALLOY STRUCTURES REGARDED AS SPHERE PACKINGS. I 

through,  than  a model in which atoms are represented 
by  packing polyhedra.  We only need to consider the 
atomic domains when we are in doubt  whether a pair  
of atoms ought to be connected by a wire in the 
model or not. 

I t  is convenient to introduce the term surface coor- 
dination number- - the  number  of neighbours of an 
a tom which he in a specified surface. We shall apply  
this par t icular ly  to the surface coordination of one 
a tom of a coordination shell by  other atoms of the 
same coordination shell. Thus in the 12-coordination 
shells of atoms in the face-centred cubic or hexagonal  
close-packed structures (which are not t r iangulated 
coordinated shells in our present sense) the surface 
coordination number  of any  atom is 4. In  the icosa- 
hedral  12-coordination, the surface coordination num- 
ber is 5. :For brevity,  we shall  refer to an atom with 
q-fold surface coordination as an Sq atom. 

2.2. Topology of the triangulated coordination shells 

The number  of equilateral  triangles which can meet 
a t  a point  in a non-reentrant  polyhedron is 3, 4, 5 or 6 
(coplanar in the case of 6). If there are contacting 
spheres of uni t  radius at each corner of the triangles, 
the radius of an inner sphere which touches all of 
these spheres is 0.225, 0.414, 0.901 and oo in these 
four cases. I t  is clear tha t  the case of 5 triangles meet- 
ing at a point  is admirab ly  suited for coordination of 
atoms differing only sl ightly in their  respective sizes 
and tha t  surface coordinations of 3 and 4 would be 
more suitable for the coordination of small  atoms by 
signif icantly larger ones.* Nonetheless, since all atoms 
cannot  be $5, the question is which of S 4 or S 6 provides 
least distort ion from equilateral  triangles when dealing 
wi th  atoms of near ly  the same size. A var ie ty  of geo- 
metr ical  considerations indicates tha t  S 6 is to be pre- 
ferred. For example,  if we consider equal spheres 
placed at the corners of symmetr ica l  3-fold, 4-fold, 
5-fold and 6-fold b ipyramids  and in each case the 
separat ion of the spheres along the axis is made equal  
to the edge length in the ring, then all triangles in each 
case are equivalent  and isosceles. They are as shown in 
Fig. 2. 

While S s is favoured over $4, the lat ter  cannot be 
decisively ruled out. There m a y  be meri t  in con- 

* In  order to specify more defini tely the usage of small,  
large and nearly equal atoms, we shall consider (somewhat 
arbi t rar i ly)  as 'near ly  equal '  a toms those whose radii do not  
differ  by  more t han  25 %. 

V = ~ Vq (2) 
q 

and 
E = ½.~ qvq, (3) 

q 

since each q-fold vertex has q edges each shared with 
one other vertex. 

For polyhedra whose faces are all tr iangular,  we 
have addi t ional ly  

F = ~ 2-" qVq, (4) 
q 

since each q-fold vertex has q faces each shared with 
two other vertices. 

Then Euler 's  equation (1) becomes 

.~  Vq--½ .~, qVq-k~ _.~ qVq = 2; (5) 
q q q 

tha t  is, 
.~  (6-q)Vq = 12.  (6) 
q 

The cases of present interest to us are the trian- 
gulated polyhedra with 4-, 5-, and 6-fold vertices, for 
which 

2v4+v 5 = 12,  (7) 

and more especially the case of t r iangulated polyhedra  
with only 5- and 6-fold vertices for which 

v s = 12,  (8) 

v 6 = Z - 1 2 ,  (9) 

where we have replaced V by Z, the conventional  
symbol  for coordination number.  

Wi th  equal spheres, if two or more contiguous ones 
have 6-fold surface coordination, they  and all their  

Fig. 2. 

sidering, as a separate subject, the numerous ways of 
combining S 4 as well ms S 6 with $5, but  our main  
concern here is with the class of structures which 
represent the closest approach to the str ict ly un- 
a t ta inable  si tuation of having throughout  the struc- 
ture regular te t rahedral  groupings of atoms. This class, 
with surface coordinations only of 5 or 6, is a l ready 
quite extensive. 

A theorem due to Euler  states tha t  for any  poly- 
hedron, having V vertices, E edges and F faces 

V - E + F  = 2 .  (1) 

If Vq is the number  of vertices which are connected 
by  q edges to neighbouring vertices (for short, v~ is 
the number  of q-fold vertices), we have 

33 S~ Ss $6 
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neighbours are co-planar. This a r rangement  can be 
wrapped around a sphere only of relat ively large 
radius if it is not  to produce large distort ions of the 
equi lateral  triangles. Hence it  is an appropr ia te  
a r rangement  only for what  we may  call very large 
coordinat ion shells. 

We may  single out as an impor t an t  class those 
t r iangula ted  coordinat ion shells with 5-fold and 6-fold 
vertices in which no atoms with 6-fold surface co- 
ord ina t ion  are contiguous. I t  turns  out t ha t  there are 
jus t  four of these, and t h a t  they  are the  four which 
have been recognized (Kasper, 1956) as characteristic 
of the complex structures of t rans i t ion metal  alloys. 

We consider these cases in order of ascending n 6, 
making  use of equations (7) and (8). 

12-Coordination: Z = 12, n 6 = 0 . - -Around  an S 5 
a tom A we have a ring of 5 S 5 atoms B C D  E F. 
BC, CD etc. are also necessarily contacts  to complete 
the  triangles. Each  pair  BC, CD, . . . ,  F B  must  also 
form triangles with fur ther  atoms G H I J K, one for 
each. I t  is not  possible t h a t  G and H are the same 
atom, since then  C would be S 4. I t  is not  possible t ha t  
G and I are the same atom, since then  H would be S a. 
All other  coincidences among G, . . . ,  K are equiva- 
lent  to these two:  hence G , . . . ,  K are distinct.  
GH, HI ,  etc. are necessarily contacts  to complete 
the triangles. Each  of these 5 requires one more 
neighbour to be $5, and one more S 5 a tom is required 
to complete the 12. Thus one arrangement, and only 
one, satisfies the co~itions. This is the regular icosa- 
hedral 12-coordination. 

13-Coordination: Z = 13, n 6 = 1 . - -Around  the  S 6 
atom, A, we must  have a contact ing ring of 6 S 5 a toms 
B C D E F G ,  and a fur ther  ring of atoms H I J K L M  
making  triangles with each of the  pairs BC, CD, 
. . . ,  GB. As in the previous case, it  is not  possible 
t h a t  any  two of H, . . . ,  M are the same atom, since 
t ha t  would always require t h a t  some a tom or atoms 
was S a or S 4. These are therefore distinct,  and, to 
complete the triangles, form a ring of 6 neighbours. 
Each  of these 6 requires one more neighbour to become 
$5, and we shall then  have 12 S 5. The s tructure cannot  
be completed wi thout  another  S 6 atom. Hence there 
is no triangulated 13-coordination shell. 

14-Coordination: Z = 14, n 6 = 2 . - -The  shell dis- 
cussed in the preceding section can now be completed. 
We should also consider the possibil i ty t h a t  one of the  
a toms in the second ring, say H, is S 6. Then this ring 
requires 7 more contacts,  but  we are allowed only 
one more S 5 a tom to provide them. Hence there is one 
and only one triangulated 14-coordination. 

15-Coordination: Z = 15, n 6 = 3 . - -Proceeding as 
before we allow two of the atoms in the  ring H , . . . ,  M 
to be S 6. 8 more contacts  with this ring are then  
required. These can be provided by the two fur ther  
S 5 atoms needed, in contact  with each other, in the 
required manner  if and only if the S 6 atoms are 
diagonal ly  opposite to each other. Hence there is one 
and only one triangulated 15-coordination shell. 

16-Coordination: Z = 16, n 6 - - 4 . - - T h e  8 contacts  
required by the  ring H, . . . ,  M with 2 S 6 atoms can- 
not  be provided by 2 S s and 1 S 6 atom, which require 
10 if they  form a triangle, and more otherwise. 

We therefore allow 3 atoms of the ring H, . . . ,  M to  
be S 6. 9 fur ther  contacts  with the atoms of this r ing 
are required. These are provided by the required 3 
addi t ional  S 5 atoms, in a triangle, when the 3 S 6 
a toms are in a l te rna t ing  positions round the ring, and 
in no other  way. Hence there is one and only one 
triangulated 16-coordination without adjacent 6-fold ver- 
tices, and all triangulated coordination shells having 
Z > 16 with only 5-fold and 6-fold vertices have at least 
one pair of adjacent 6-fold vertices. 

2.3. Detailed geometry of the four special coordination 
shells 
We assume t ha t  the 6-rings are plane regular 

hexagons, symmetr ica l ly  disposed about  the  central  
atom, the length of each side of a hexagon being 2. 
We define a 1 as the  distance from the  central  a tom 
to the  mid-point  of a hexagon, (a 2 + 1) as the  dis tance 
from the central  a tom to one of the a toms in a hex- 
agon, and 2b as the distance between neighbouring 
atoms in different hexagons. For  the regular icosa- 
hedral  12-coordination we take  the distance between 
all neighbours in the  coordinat ion shell to be 2, and 
define (a l+  1) as their  distance from the  central  atom. 
The depar ture  of these a and b values from un i ty  is 
a measure of the  degree of incompat ib i l i ty  of the  
ar rangement  wi th  contact  packing of hard  equal 
spheres. The difference between a 1 and a 2 is a measure 
of the  incompat ib i l i ty  with contact  packing of hard  
spheres, permi t ted  to be unequal .  

Z12- a 1 = [½(5÷]/5)]½-1 = 0.902.  

Z14: a~ = (a21÷4)½-1 , 

b = (a12+2-]/3) ½ . 

Some corresponding values are: 

a 1 = 0.8 0.856 0.9 1.0 1-1 1.2 
a 2 = 1.15 1-18 1.19 1.24 1.28 1.33 
b = 0.953 1 1.04 1.13 1.22 1.31 

a 1 ma y  be greater or less t ha n  1, but  is necessarily 
less t ha n  both  a 2 and b. Thus this coordinat ion re- 
quires the  central  a tom to be compressed along the  
symmet ry  axis of the coordinat ion sphere. When  
b = 1 (and a I = (]/3-1)½, a 2 = (3+V3)½-1) this dis- 
tor t ion  is ra ther  severe. The required aspherici ty of 
the central  a tom is reduced by making b somewhat  
greater t ha n  1. 

Z15: a 1 = 1 , 

a 2 = ] / 5 -1  = 1.24, 

b = ½]/3 = 0-866. 

Zl'6- a 1 = ] / (~)=  1.225, 

a~. = ]/(-1[)-1 = 1.34, 

b does not  exist. 
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3. The  combinat ion  of n o r m a l  coordinat ion shel l s  

Thus far we have discussed only the coordination of 
atoms around a single atom. We have identified some 
reasons which interpret the empirically observed 
preference for four particular coordination shells of 
12, 14, 15, and 16 atoms. We shall call these the 
normal coordinations. We now consider the conditions 
imposed on complete structures when it is required 
that  not only the atoms around one form a normal 
coordination, but that  these atoms in turn are also 
surrounded by normal coordination shells. Two main 
principles emerge from this consideration, both of 
which are of considerable value in describing the main 
features of a complex alloy structure. One is the ex- 
istence of what we call the major skeleton, the meaning 
of which will be made clear below. The other is the 
necessary existence in such structures of planar, or 
approximately planar, layers of atoms, containing 
certain necessary pattern-motifs. The latter principle 
introduces the possibility of systematic classification 
of certain families of structures in terms of the per- 
mitted stacking sequences of these layers. 

3-1. The major skeleton 
We distinguish the sites of 12-coordination as minor 

and of more than 12-coordination as major. If an atom 
A is at a minor site, it has no neighbour with which 
it shares 6 neighbours in common. If atom A is at a 
major site of coordination number Z, it has (Z-12)  
such neighbours. If B is one of these, it follows that  
B has a neighbour (namely A) in its coordination 
shell, with which it has 6 neighbours in common. 
Therefore B is also a major site. We call the line join- 
ing A and B, or joining any pair of atoms which have 
6 neighbours in common a major ligancl. Every major 
site of coordination number Z is the meeting point of 
(Z-12)  major ligands. This is at least 2, since the case 
Z = 13 does not exist. Hence the major ligands form 
one or more connected networks, the totality of which 
we call the major skeleton of the structure. The nodes 
of the major skeleton comprise all the major sites of 
the structure. The geometry of the major skeleton is 
governed by rules which generally make it substan- 
tially simpler than the structure as a whole. Sites of 
Z14, Z15, or Z16 are the meeting points of 2, 3, or 
4 major hgands, which are (accurately or approx- 
imately) in line, 120 ° apart in a plane, or in tetrahedral 
disposition, respectively. In brief, this leads to a 
geometry similar to that  of organic chemistry in the 
absence of univalent elements. This absence corre- 
sponds to the absence of Z13. I t  has the consequence 
that  each connected system of major ligands is infinite. 
The least ramification is provided by a continuous line 
of Z14 atoms. In topological principle, such a line could 
close on itself; but with the requirement that in this 
case the pairs of hgands at each atom are at least 
approximately in line with each other, this closure 
could only be effected in a very large circuit, requiring 

a structure with a very large unit cell. We believe 
without formal proof, that  the principle of layering 
to be developed below excludes the possibility of this 
kind of closure. 

In the next degree of ramification, we have infinite 
planar networks in the major skeleton, made up of 
Z15 atoms with or without Z14 atoms. In the absence 
of large distortions the meshes of such a network will 
be topologically hexagons. Atoms of the same co- 
ordination numbers could also make three-dimensional 
networks in the major skeleton. Three-dimensional 
networks naturally result when Z16 atoms are present, 
from the tetrahedral disposition of the major ligands 
from these sites. 

A full range of examples will be given later, but by 
way of illustration of characteristic major skeletons 
we may mention at this stage three examples. In the 
/~-tungsten structure the major skeleton consists solely 
of 14-coordination rows, parallel to each of the cube 
axes. In a-phase it comprises 14-coordination rows 
parallel to the tetragonal axis threading planar net- 
works of Z15 and Z14 atoms which lie parallel to the 
base plane. In the Laves phases the major skeleton 
is a diamond-like structure of Z16 atoms. 

The major skeleton will as a rule define uniquely, 
apart from small displacements and distortions, the 
corresponding complete structure, if there is one at all. 
Around every major ligand there is a corollary ring 
of 6 atoms. Any of these may be minor or major sites. 
(It is important to notice that  since a major ligand is 
defined as the line joining two sites which have 6 
neighbours in common, not every line joining a neigh- 
bouring pair of major sites is a major ligand.) Along a 
sequence of 14-coordinated atoms the successive 
corollary rings are in anti-prism position with respect 
to each other, so that  the row and its corollaries form 
a column three atoms thick. Fixing any one of the 
corollary atoms substantially fixes all atoms in its ring 
and in neighbour rings. If any of the corollary sites 
is major, it belongs to the major skeleton, and its 
position is already fixed, by hypothesis. There is no 
freedom of choice for corollary positions around Z15 
or Z16 sites. Hence freedom can only exist for the 
corollary positions around long Z14 sequences, and 
then only when these corollary positions are all minor. 
If such cases exist, it is still likely that  simple con- 
siderations of packing compatibility will suffice to 
show that there is essentially but one choice of posi- 
tions, if any. 

Paradoxically, the major ligands (though the name 
is not ill-chosen, because they connect sites of larger 
coordination number, mainly suited for larger atoms) 
may nevertheless be shorter ligands than the average. 
In eases of 14 and 15 coordination the atoms of the 
major skeleton are in relatively close contact one with 
another. This, together with the geometrical rules 
governing the major skeleton structure, can be sug- 
gestive of covalent bonding. Our argument is am- 
bivalent with respect to the question of whether this 
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is chemically significant. Packing considcrations alone 
suffice to account for the system of pseudo-valences 
observed in the major skeleton. On the other hand a 
covalent bonding tendency compatible with this sys- 
tem could be a factor contributing to the stability of 
the structure adopted. 

3.2. Layering in structures with normal coordinations 
Consider a triangle of contiguous atoms AoBoC o 

belonging to a structure in which all coordinations 
are normal. These require the presence of a pair of 
atoms D+, D_ above and below points near the centre 
of the triangle (Fig. 3). We use the suffixes + and - 

h 

/3 C 
Fig. 3. 

to denote positions above and below the plane AoBoC o, 
and zero to denote a position which is at least ap- 
proximately in this plane. Of the ligands AB, BC, CA, 
at most one can be major, since major ligands at one 
atom do not make acute angles with each other. Thus 
there are two possibilities: 

(i) All are minor. Then there exist pairs E+, E_; 
F+, F_; G+, G_ above and below points outside the 
edges AB, BC, CA. Then, to complete the tetrahedron 
with AoE+E_ there must exist an atom at H 0, and 
correspondingly atoms at Io, J0, K0, L0, M0, at least 
approximately coplanar with ABC (Fig. 4(a)). 

(ii) One edge, say AB, is major. Then, beyond E 
there is an atom H o, placed essentially symmetrically 
to C with respect to AB. There are also atoms at 
Jo, K0, L0, Mo as before, and the presence of further 
atoms at N 0, Po, symmetrical to L 0, K 0 with AB, 

follows from the equivalence of the triangles ABC and 
ABH (Fig. 4(5)). 

In either case new triangles of contiguous atoms, at 
least approximately eoplanar with the original triangle, 
have been established, and continuance of the argu- 
ment with reference to these triangles requires the 
existence in either case of an unlimited network of at 
least approximately coplanar contiguous atoms. The 
angles between ligands in this network are either 
approximately 60 ° or approximately 120 °, so that  the 
simplest continuation of either is in the form of 
tessellations of hexagons and triangulations. However, 
the mode of continuation is not uniquely defined: for 
one reason because of the alternative modes of con- 
nection indicated by Fig. 4 (a) and 4 (b); for another, 
because permissible distortions may allow the sub- 
stitution of pentagons for hexagons in the pattern 
(an angle approximately 120 ° may also be approx- 
imately 108°). 

Let us now apply similar considerations to a co- 
planar contiguous hexagon of atoms A oBoCoDoEoF o 
around a major ligand G+G (Fig. 5). If AB is a minor 
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Fig. 5. 

ligand then beyond AB there is an external atom H 0 
essentially in the plane of the hexagon. There must be 
further coplanar atoms associated with the triangle 
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(a) (b) 
Fig. 6. The two basic nets occurring frequently in complex alloy structures: (a) 39", 4, 3, 4 net; (b) Kagom@ net 3, 6, 3, 6. The 

numerical symbols are Schlafli symbols (Cundy& Rollett, 1952), specifying the number and sequence of various polygons 
around each vertex. 

AoBoH o. If DE is a major ligand, then there is an 
external pair I+, I_ making a tetrahedron with D 
and E, and completion of the second tetrahedra on 
DI+I_ and EI+I_ requires atoms J0, K0 essentially in 
the plane of the hexagon. Completion of the second 
tetrahedra on JI+I_ and KI+I_ requires further atoms 
L 0, M 0, but it is a possibility to be considered that  
these are coincident, so that DJ(LM)KE is a pentagon 
instead of a hexagon. Continuation of the argument 
requires the existence of further at least approx- 
imately coplanar atoms, again without limit. 

The patterns of the coplanar arrays derived from the 
hexagon are similar to those derived from the triangle, 
except that  they include a tesselation consisting ex- 
clusively of hexagons. 

Starting with the coplanar pentagon around a minor 
ligand, we may argue exactly as for the hexagon. 

The repeated arguments employed here should be 
regarded as having permissive rather than compelling 
force: because a single application of the argument is 
satisfied by approximate as well as by exact c0. 
planarity, and successive approximations may depart 
further from the plane. Nevertheless, they give a strong 
indication that  structures containing exclusively 'nor- 
mal coordinations' will be 'layer structures' having 
unlimited coplanar or approximately coplanar arrays 
of neighbouring atoms (each being a neighbour of at 
least three others in the same plane or approximate 
plane): and that  the patterns in these arrays will 

correspond to tessellations of triangles, hexagons, and 
pentagons. Such a layer, wherein the connections 
correspond to interatomic distances, we shall call a 
primary layer. It  is also to be noticed that  the atoms 
above and below the planes of the layers so defined, 
likewise, in the examples considered, fall into layer 
arrangements satisfying similar rules of construction. 
While this point has not been investigated fully enough 
in the foregoing section, it may be stated as a result 
that  this second type of layer in all known or predicted 
structures with normal coordination consists of tes- 
sellations of squares and triangles. This type of layer 
we shall designate as a secondary layer. In Fig. 6, 
there is shown an especially prominent example of 
each kind of layer, Fig. 6(a) for a secondary and 
Fig. 6(b) for a primary layer. These two examples are 
among the simplest of semi-regular tessellations. 

The stacking compatibility of layers will be better 
considered in the subsequent detailed discussion of 
various structure types. 
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